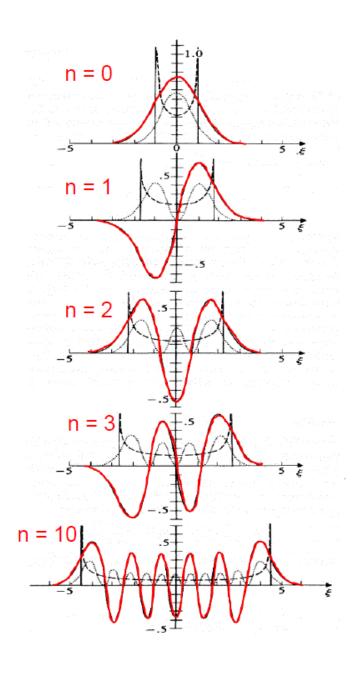
Der eindimensionale harmonische Oszillator



- Wellenfunktion
- $--- |\psi|^2$
- Aufenthaltswahrscheinlichkeit für klassischen Oszillator

Wahrscheinlichkeitsdichte für große

Quantenzahlen n →

Klassische Aufenthaltswahrscheinlichkeit!

(Bohrsches Korrespondenzprinzip)

Quelle: Bransden & Joachain, Physics of Atoms and Molecules, Prentice Hall

Kugelflächenfunktionen

$$0 0 Y_{0,0} = \frac{1}{(4\pi)^{1/2}}$$

1 0
$$Y_{1,0} = \left(\frac{3}{4\pi}\right)^{1/2} \cos \theta$$

 ± 1 $Y_{1,\pm 1} = \mp \left(\frac{3}{8\pi}\right)^{1/2} \sin \theta e^{\pm i\phi}$

2 0
$$Y_{2,0} = \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$$

 ± 1 $Y_{2,\pm 1} = \mp \left(\frac{15}{8\pi}\right)^{1/2} \sin\theta\cos\theta e^{\pm i\phi}$
 ± 2 $Y_{2,\pm 2} = \left(\frac{15}{32\pi}\right)^{1/2} \sin^2\theta e^{\pm 2i\phi}$

3 0
$$Y_{3,0} = \left(\frac{7}{16\pi}\right)^{1/2} (5\cos^3\theta - 3\cos\theta)$$

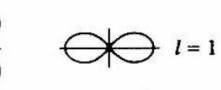
 ± 1 $Y_{3,\pm 1} = \mp \left(\frac{21}{64\pi}\right)^{1/2} \sin\theta (5\cos^2\theta - 1)e^{\pm i\phi}$
 ± 2 $Y_{3,\pm 2} = \left(\frac{105}{32\pi}\right)^{1/2} \sin^2\theta \cos\theta e^{\pm 2i\phi}$
 ± 3 $Y_{3,\pm 3} = \mp \left(\frac{35}{64\pi}\right)^{1/2} \sin^3\theta e^{\pm 3i\phi}$

Polarplots des Betragsquadrats $|Y_{lm}(\theta,\phi)|^2$ der Kugelflächenfunktionen [aus: Bransden/Joachain]

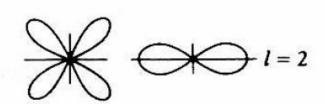
Rotationssymmetrie um z-Achse! Quasiklassische Vorstellung: Drehimpuls präzediert um Quantisierungsachse z

$\begin{array}{c} Z \\ \theta \\ 0 \end{array}$ l = 0

Kugelflächenfunktionen

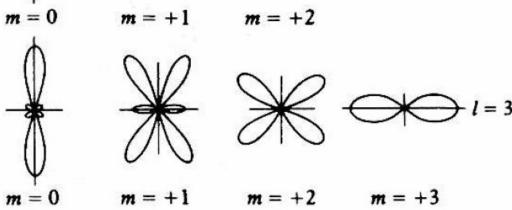


m = +1



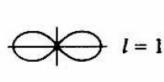
Polarplots des Betragsquadrats $|Y_{lm}(\theta,\phi)|^2$ der Kugelflächenfunktionen [aus: Bransden/Joachain]

Rotationssymmetrie um z-Achse! Quasiklassische Vorstellung: Drehimpuls präzediert um Quantisierungsachse z

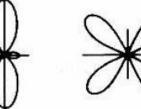


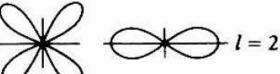
l = 0

Kugelflächenfunktionen



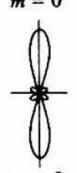
$$m = +1$$

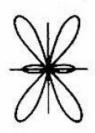


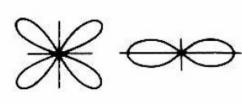


$$m = +1$$

$$m = +2$$



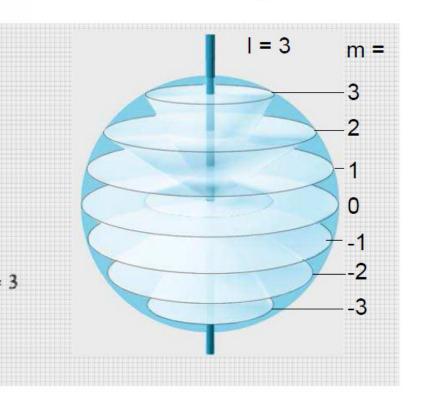




$$m = +2$$

$$m = +3$$

Polarplots des Betragsquadrats $|Y_{lm}(\theta,\phi)|^2$ der Kugelflächenfunktionen [aus: Bransden/Joachain]



Reelle Darstellung der Kugelflächenfunktionen

$$Y_{l,\cos} = \frac{1}{\sqrt{2}} \left(Y_{l|m|} + Y_{l|m|}^* \right)$$

$$Y_{l,\sin} = -\frac{i}{\sqrt{2}} (Y_{l|m|} - Y_{l|m|}^*)$$

$$Y_{l,\cos}(\theta,\phi) = \mathcal{N} \Theta_{l|m|}(\theta) \cos|m|\phi$$

$$Y_{l,sin}(\theta,\phi) = N \Theta_{l|m|}(\theta) \sin|m|\phi$$

Normierungskonstante

Keine Eigenfunktion von L_z! Nicht rotationssymmetrisch um z-Achse!

l_	771	Spherical harmonic in real form
0	0	$s=\frac{1}{(4\pi)^{1/2}}$
1	0	$p_z = \left(\frac{3}{4\pi}\right)^{1/2} \cos \theta$
	1	$p_x = \left(\frac{3}{4\pi}\right)^{1/2} \sin \theta \cos \phi$
		$p_y = \left(\frac{3}{4\pi}\right)^{1/2} \sin \theta \sin \phi$
2	0	$\mathbf{d}_{3\pi^2-r^2} = \left(\frac{5}{16\pi}\right)^{1/2} (3\cos^2\theta - 1)$
	1	$\mathbf{d}_{xx} = \left(\frac{15}{4\pi}\right)^{1/2} \sin \theta \cos \theta \cos \phi$
		$\mathbf{d}_{y\pi} = \left(\frac{15}{4\pi}\right)^{1/2} \sin \theta \cos \theta \sin \phi$
	2	$d_{\pi^2-y^2} = \left(\frac{15}{4\pi}\right)^{1/2} \sin^2\theta \cos 2\phi$
		$d_{xy} = \left(\frac{15}{4\pi}\right)^{1/2} \sin^2 \theta \sin 2\phi$

Reelle Darstellung der Kugelflächenfunktionen

$$Y_{l,\cos} = \frac{1}{\sqrt{2}} \left(Y_{l|m|} + Y_{l|m|}^* \right)$$

$$Y_{l,\sin} = -\frac{i}{\sqrt{2}} (Y_{l|m|} - Y_{l|m|}^*)$$

$$Y_{l,\cos}(\theta,\phi) = N \Theta_{l|m|}(\theta) \cos|m|\phi$$

$$Y_{l,\sin}(\theta,\phi) = N \Theta_{l|m|}(\theta) \sin|m|\phi$$

Normierungskonstante

Keine Eigenfunktion von L_z! Nicht rotationssymmetrisch um z-Achse!

Sinnvoll zur Beschreibung chemischer Bindungen in 3D!

